
Python Programming

4th Unit Page 1

Topics to be covered:

Python Programming

Unit-4

Functions - Defining Functions, Calling Functions, Passing Arguments, Keyword Arguments,

Default Arguments, Variable-length arguments, Anonymous Functions, Fruitful

Functions(Function Returning Values), Scope of the Variables in a Function - Global and

Local Variables.

Modules: Creating modules, import statement, from. Import statement, name spacing,

Python packages, Introduction to PIP, Installing Packages via PIP, Using Python Packages

Introduction to Function
Definition – A Function is a block of program statement that perform single, specific and well

defined task. Python enables it‟s programmers to break the program into functions, each of

which has some specific task.

When a function is called, the program control is passed to the first statement in the function. All

the statements in the function are executed in sequence and the control is transferred back to

function call. The function that calls another function is known as “Calling Function”, and the

function that is being called by another function is known as “Called Function”.

Why we need Functions?
1. Simpler Code

A program‟s code seems to be simpler and easier to understand when it is broken down into

functions. Several small functions are much easier to read than one long sequence of statements.

2. Code Reuse

Functions also reduce the duplication of code within a program. If a specific operation needs to

be performed in several places in a program, then a function can be written once to perform that

operation, and then be executed any number of times. This benefit of using functions is known as

code reuse because you are writing the code to perform a task once and then reusing it each time

you need to perform that task.

3. Better Testing

When each task of the program is coded in terms of functions, testing and debugging will be

simpler. Programmers can test each function in a program individually, to determine whether it is

correctly performing its operation.

Objective: Understanding Functions, Modules and Packages in Python Programming

Outcome: Students are able to write functions, modules and packages.

Python Programming

4th Unit Page 2

4. Faster Development

The entire program is divided into tasks. Each task is assigned to individual programmer or team.

So that it will be easy to accomplish the program in a faster manner.

Types of Functions
There are two different types of functions, built-in functions and user defined functions. The

functions such as input(), print(), min(), max() are example for the built-in functions. The user

defined functions are created by user. The user selects his own name for the function name. The

naming rules for the function name are same as identifier rule.

Defining Functions

To create a function we write its definition. Here is the general format of a function definition

in Python:

def function_name(): #function header

statement1

statement2

………..

Statement N

The first line is known as the function header. It marks the beginning of the function definition.

The function header begins with the key word def, followed by the name of the function,

followed by a set of parentheses, followed by a colon (:).

The function body contains one or more statement. These statements are executed in sequence to

perform the task for which it is intended to define.

Example function definition for even or odd:

In the above function definition, “eventest” is the name of the function, “x” is the parameter or
argument. The body contains some lines of code for finding whether a given number is even or

odd.

#function definition

def eventest(x):

if x%2==0:

print("even")

else:

print("odd")

Function Body

Python Programming

4th Unit Page 3

Calling Functions
A function definition specifies what a function does, but it does not cause the function to

execute. To execute a function, you must call it. This is how we would call the “eventest”

function:

eventest(n)

When a function is called, the interpreter jumps to that function definition and executes the

statements in its body. Then, when the end of the body is reached, the interpreter jumps back to

the part of the program that called the function, and the program resumes execution at that point.

When this happens, we say that the function returns

Complete example for eventest.py

Output:

Passing Arguments to Function

An argument is any piece of data that is passed into a function when the function is called. This

argument is copied to the argument in the function definition. The arguments that are in the

function call are known as “Actual Arguments or Parameters”. The arguments that are in

function definition are called “Formal arguments or Parameters”. We can pass one or more

#function definition

def eventest(x): #function header

if x%2==0:

print("even")

else:

print("odd")

n=int(input("Enter any number:"))

#function calling
eventest(n).

Python Programming

4th Unit Page 4

number of actual arguments in the function call. The formal argument list and their type must

match with actual arguments.

Example Program to calculate Simple Interest

Note: Write an Example Program to calculate Compound Interest (A=p*(1+(r/n))^tn)

Keyword Arguments
When we call a function with some values, these values are passed to the formal

arguments in the function definition based on their position. Python also allows functions to be

called using the keyword arguments in which the order (position) of the arguments can be

changed. The values are not copied not according to their position, but based on their names.

#function definition

def eventest(x): #function header, here x is called Formal Argument or Parameter

if x%2==0:

print("even")

else:

print("odd")

n=int(input("Enter any number:"))

#function calling

eventest(n). # here n is called Actual Parameter

#finding the simple interest

def si(p,t,r): #here p,t,r are formal arguments

s=(p*t*r)/100;

print("The simple interest is:",s)

T=p+s;

print("The Total amount with interest is:",T)

n1=float(input("Enter principal amount:"))

n2=float(input("Enter number of months:"))

n3=float(input("Enter rate of Interest"))

#function call

si(n1,n2,n3) #here n1,n2,n3 are actual arguments

Python Programming

4th Unit Page 5

The actual arguments in the function call can be written as follow:

Function_name (Argument_name1=value1, argument_name2=value2)

An argument that is written according to this syntax is known as “Keyword Argument”.

Example program: (1) Calculating Simple interest using keyword arguments.

Output:

The order of the actual arguments and formal arguments changed. Here, based on the name of

the actual arguments the values are copied to the formal arguments. The position of the

arguments does not matter.

Example program: (2) using the keyword arguments

Output:

#keyword arguments

def simpleinter(principal,rate,time): #function Header

i=(principal*rate*time)/100

print("The interest is:",i)

print("Total amount is:",principal+i)

#function call

simpleinter(rate=7.25,time=3,principal=5000)

('The interest is:', 1087.5)

('Total amount is:', 6087.5)

#function definition

def disp(name,phone,email): #function header

print "Your name:",name

print " Your Phone Number:",phone

print "Your email id:",email

disp(phone=9704,email="me@gmail.com",name="Rosum") #order of arguments is changed

Your name: Rosum

mailto:me@gmail.com

Python Programming

4th Unit Page 6

Note: keyword arguments make program code easier to read and understand.

Default Arguments
Python allows functions to be called without or with less number of arguments than that

are defined in the function definition. If we define a function with three arguments and call that

function with two arguments, then the third argument is considered from the default argument.

The default value to an argument is provided using the assignment (=) operator. If the

same number of arguments are passed then the default arguments are not considered. The values

of actual arguments are assigned or copied to formal arguments if passed, default arguments are

considered otherwise. Hence, the formal arguments are overwritten by the actual arguments if

passed.

General format of default arguments:

Example Program:

Your Phone Number: 9704

Your email id: me@gmail.com

#function definition

def function_name(arg1=val1,arg2=val2,arg3=val3)

Statement 1

Statement 2

Statement 3

#function call

function_name() #without arguments

function_name(val1,val2) #with two arguments, third argument is taken from default argument

#default arguments

def add(x=12,y=13,z=14):

t=x+y+z

print("The sum is:",t)

#function call without arguments

add()

#function call with one argument

add(1)

#function call with two arguments

add(10,20)

#function call with three arguments

add(10,20,30)

mailto:me@gmail.com

Python Programming

4th Unit Page 7

Output:

Variable-length arguments
In some situations, it is not known in advance how many number of arguments have to be

passed to the function. In such cases, Python allows programmers to make function calls with

arbitrary (or any) number of arguments.

When we use arbitrary arguments or variable-length arguments, then the function

definition uses an asterisk (*) before the formal parameter name.

Syntax:

def fun_name([arg1,arg2,..argn],*var_length_tuple)

Example program:

#variable-length argument

def var_len_arg(name,*args):

print "\n",name,"Hobbies are:"

for x in args:

print(x)

#function call

#subash is assigned to name, and rest of arguments are assigned to *args

var_len_arg("Subash","Cricket","Movies","Traveling")

#rajani is assigned to name, and rest of arguments are assigned to *args

var_len_arg("Rajani","Reading Books","Singing","Tennis")

Output:

Subash Hobbies are:

Cricket

Movies

Traveling

Rajani Hobbies are:

Reading Books

Singing

Tennis

('The sum is:', 39)

('The sum is:', 28)

('The sum is:', 44)

('The sum is:', 60)

Python Programming

4th Unit Page 8

Anonymous Functions
Lambda or anonymous functions are so called because they are not declared as other functions

using the def keyword. Rather, they are declared using the lambda keyword. Lambda functions

are throw-away functions, because they are just used where they have been created.

Lambda functions contain only a single line. Its syntax will be as follw:

The arguments contain a comma separated list of arguments and the expression is an

arithmetic expression that uses these arguments. The function can be assigned to a variable to

give it a name.

Write a Python program using anonymous function to find the power of a number?

Program Output

#lambda or anonymouse function

n=lambda x,y: x**y

x=int(input("Enter value of x :"))

y=int(input("Enter value of y :"))

#function call in the print() function

print(x,"power",y,"is",n(x,y))

Enter value of x :3

Enter value of y :4

(3, 'power', 4, 'is', 81)

Properties of Lambda or Anonymous functions:

 Lambda functions have no name

 Lambda functions can take any number of arguments

 Lambda functions can just return a single value

 Lambda functions cannot access variables other than in their parameter list.

 Lambda functions cannot even access global variables.

Calling lambda function from other functions

It is possible to call the lambda function from other function. The function that uses the lambda

function passes arguments to lambda function. The Lambda function will perform its task, and

returns the value to caller.

Write a program to increment the value of x by one using lambda function.

Program Output

#lambda or anonymouse function

def inc(y):

return(lambda x: x+1)(y)

x=int(input("Enter value of x :"))

#function call in the print() function

Enter value of x :3

('the increment value of ', 3, 'is', 4)

lambda arguments : expression

Python Programming

4th Unit Page 9

print("the increment value of ",x,"is",inc(x))

Fruitful Functions(Function Returning Values)
The functions that return a value are called “Fruitful Functions”. Every function after performing

its task it return the program control to the caller. This can be done implicitly. This implicit

return return nothing to the caller, except the program control. A function can return a value to

the caller explicitly using the “return” statement.

Syntax:

return (expression)

The expression is written in parenthesis that computes a single value. This return statement is

used for two things: First, it returns a value to the caller. Second, To end and exit a function and

go back to the caller.

Write a program using fruitful function to compute the area of a circle.

Program Output

#finding the area of a circle

def area(r):

a=3.14*r*r

return(a) #function returning a value to

the caller

#begining of main function

x=int(input("Enter the radius :"))
#calling the function

r=area(x)
print("The area of the circle is:",r)

Enter the radius :5

('The area of the circle is:', 78.5)

Scope of the Variables in a Function

All variables in a program may not be accessible at all locations in that program. This

depends on where you have declared a variable. The part of the program in which a variable can

be accessed is called its scope. The duration for which a variable exists is called its “Lifetime”.

If a variable is declared and defined inside a function its scope is limited to that function only. It

cannot be accessed to outside that function. If an attempt is made to access it outside that

function an error is raised.

The scope of a variable determines the portion of the program where you can access a

particular identifier. There are two basic scopes of variables in Python:

 Global Scope -variables defined outside the function and part of main program

 Local Scope - variables defined inside functions have local scope

Python Programming

4th Unit Page 10

Global vs. Local variables

Variables that are defined inside a function body have a local scope, and those defined

outside have a global scope.

This means that local variables can be accessed only inside the function in which they

are declared, whereas global variables can be accessed throughout the program body by all

functions. When you call a function, the variables declared inside it are brought into scope.

Following is a simple example –

Modules

A module is file that contains Python code. This code contains functions and variables

that perform related tasks. This approach is called “Modularization”. This makes the program

easier to understand, test and maintain.

Modules also make it much easier to reuse same code in more than one program. If we

have written set of functions that are needed in several different programs, we can place them in

modules. Then we can import these modules in each program to call one of the functions.

Creating Modules
For example we use the functions such as area of circle, circumference of circle, area of

rectangle and circumference of rectangle in many programs. So we can create two modules such

as: circle and rectangle, and put the functions related to the circle in that module and functions

related to the Rectangle in another module called rectangle. We can just import these modules

into any number of programs if their functions are needed.

Rules for Module Names:

Note: To refer the global variable “global” keyword is used.

total=0;# This is global variable.

Function definition is here

def sum(arg1, arg2):

Add both the parameters and return them."

total= arg1 + arg2;# Here total is local

variable.

print"Inside the function local total :

", total

return total;

Now you can call sum function

sum(10,20);

tot=10

def sum(a,b):

global tot #refering the global variable

tot=a+b

print("The sum is:",tot)

sum(12,3)

print("The global value of tot is:",tot)

print"Outside the function global total : ", total

Python Programming

4th Unit Page 11

 A module file name should end with .py. If it is not ended with .py we cannot import it

into other programs.

 A module name cannot be keyword.

 The module must be saved within the same folder (directory) where you are accessing it.

Import statement - Accessing these modules
To use these modules in program, we import them in program with import statement. To

import the circle module, we write it as follow:

When the Python interpreter reads this statement it will look for the file circle.py in the

same folder as the program that is trying to import it. If it finds the file it will load it into

memory. If it does not find the file, an error occurs.

Example program: circle.py module

1. Creating the Module

2. Using the Module in another program

testcircle.py

import circle

#definition of area function

def area(r):

a=3.14*r*r

return(a)

#definition of circumference

def circum(r):

c=2*3.14*r

return(c)

import circle

x=float(input("Enter the Radius:"))

#function call to area

res=circle.area(x)

print "The area of the Circle is:",res

#function call to circum

res=circle.circum(x)

print "The Circumference of the Circle is:",res

Python Programming

4th Unit Page 12

from. Import statement

There are Four ways of using import to import a module and subsequently use what was

imported. We will use the math module to illuminate:

This method imports everything from the math module, and members of the module are accessed

using dot notation.

This method imports only the dentition of cos from the math library. Nothing else is imported.

This method imports only the dentitions of cos and pi from the math library. Nothing else is

imported.

This method also imports everything from the math module, the difference being that dot

notation is not needed to access module members.

Example Program for 4th way

circle.py module

#definition of area function from circle import*

def area(r): x=float(input("Enter the Radius:"))

a=3.14*r*r #function call to area

return(a) res=area(x)

#definition of circumference print "The area of the Circle is:",res

def circum(r): #function call to circum

c=2*3.14*r res=circum(x)

Way 1

import math

print math.cos(math.pi/2.0)

#way 2

from math import cos

print cos(3.14159265/2.0)

#way 3

from math import cos, pi

print cos(pi/2.0)

#way 4

from math import *

print cos(pi/2.0)

Python Programming

4th Unit Page 13

return(c) print "The Circumference of the Circle is:",res

Knowing the current module name

If we want to know the name of the current module, then we can use the attribute “ name ” to

print the name of the module with help of the print() function.

Example:

Namespacing

A namespace is a syntactic container which permits the same name to be used in

different modules or functions. Each module determines its own namespace, so we can use the

same name in multiple modules without causing an identification problem.

For example, functions such as area(r) and circum(r) are part of the module circle.py. We

can also use same names in another module like “cir.py”. These functions are called from these

module independently.

mod1.py testans.py

question="What is your name"
ans="Write your answer"

import mod1

import mod2

q=mod1.question

print "Question is:",q

a=mod1.ans

print "Answer is:",a

mod2.py

q=mod2.question

print "Question is:",q

a=mod2.ans
print "Answer is:",a

question="What is your name"

ans="Guido Van Rossum"

Question is: What is your name

Answer is: write your name

Question is: What is your name
Answer is: Guido Van Rossum

Python Packages

Print “The module name is:”, name

Python Programming

4th Unit Page 14

Creating our own packages (Content Beyond Syllabus)
When you've got a large number of Python classes (or "modules"), you'll want to

organize them into packages. When the number of modules (simply stated, a module

might be just a file containing some classes) in any project grows significantly, it is

wiser to organize them into packages – that is, placing functionally similar

modules/classes in the same directory.

Steps to Create a Python Package

Step1: Creating the Directory with the name “ksr” in Pyhon folder.

Step 2 & 3: Put your module “arith.py” in it along with “ init .py” file

Working with Python packages is really simple. All you need to do is:

1. Create a directory and give it your package's name.

2. Put your module in it.

3. Create a __init__.py file in the directory

That's all! In order to create a Python package, it is very easy. The __init__.py file is

necessary because with this file, Python will know that this directory is a Python

package directory other than an ordinary directory (or folder – whatever you want to

call it). Anyway, it is in this file where we'll write some import statements

to import modules from our brand new package.

Python Programming

4th Unit Page 15

Importing the package

We can write another file “arith.py” that really uses this package. Put this file outside the

“ksr” directory, but in the “python” directory as shown in the screenshot.

arith.py module modtest.py

#this module contains all function to

perform arithmetic operations

def add(x,y):

return(x+y)

def sub(x,y):

return(x-y)

def mul(x,y):

return(x*y)

def div(x,y):

return(x/y)

def rem(x,y):

return(x%y)

from ksr.arith import*

#reading the data from keyboard

a=int(input("Enter a value:"))

b=int(input("Enter a value:"))

#function calls

print("The sum is :",add(a,b))

print("The subtraction is :",sub(a,b))

print("The product is:",mul(a,b))

print("The quotient is:",div(a,b))

print("The remainder is:",rem(a,b))

Output:

Introduction to PIP
So far we have been working with package that we have created and is in our system.

There may be situation where we want to install packages that are not in our system and created

by others residing in other system. This can be done using the PIP tool.

The PIP command is tool for installing and managing the packages, such as found in

Python Packages Index repository (www.pypi.python.org). To search for a package say numpy,

type the following:

Enter a value:24

Enter a value:5

The sum is : 29

The subtraction is : 19

The product is: 120

The quotient is: 4.8

The remainder is: 4

The Python Package Index is a repository of software for the Python programming

language. There are currently1,15,120 packages here. If we need one package we can download

it from this repository and install in our system. This can be performed using the PIP tool.

http://www.pypi.python.org/

Python Programming

4th Unit Page 16

Installing Packages via PIP
To install a new package we can use the pip tool.

 To do this, first go to the path where Python software is installed and select the folder

„Scripts” which contains pip tool.

 Use this path in the command prompt and type the pip command.

 The requested package is downloaded from the internet from the www.pypi.python.org

website.

 So you must have internet connection when you want to download, error wil be raised
otherwise.

 To install package we write it as follow: pip install numpy in the command prompt.

To uninstall package we can use the pip tool as follow: pip uninstall numpy in the command

prompt.

http://www.pypi.python.org/

Python Programming

4th Unit Page 17

Using Python Packages
Write a program that uses the numpy package.

celfah.py

Output:

-

----------------------***********************End of 4th Unit**********--------------------

import numpy #numpy package

l=[12.34,45.56,68.78,98.78]

a=numpy.array(l) #numpy array() function

print("Temp in 'C' are:",a)

f=(a*9/5+32)

print("The temp in 'F' are:",f)

	Topics to be covered:
	Introduction to Function
	Why we need Functions?
	1. Simpler Code
	2. Code Reuse
	3. Better Testing
	4. Faster Development

	Types of Functions
	Defining Functions
	Calling Functions
	Example Program to calculate Simple Interest
	Function_name (Argument_name1=value1, argument_name2=value2)
	Example program: (1) Calculating Simple interest using keyword arguments.
	Example program: (2) using the keyword arguments
	General format of default arguments:
	Syntax:
	def fun_name([arg1,arg2,..argn],*var_length_tuple)

	#subash is assigned to name, and rest of arguments are assigned to *args
	#rajani is assigned to name, and rest of arguments are assigned to *args
	Output:

	Anonymous Functions
	Write a Python program using anonymous function to find the power of a number?
	Calling lambda function from other functions
	Write a program to increment the value of x by one using lambda function.
	Syntax:
	Write a program using fruitful function to compute the area of a circle.

	Global vs. Local variables
	Modules
	Creating Modules
	Rules for Module Names:

	Import statement - Accessing these modules
	Example Program for 4th way

	Namespacing
	Python Packages
	Creating our own packages (Content Beyond Syllabus)
	Output:

	Installing Packages via PIP
	Using Python Packages
	Write a program that uses the numpy package.
	Output:

